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Abstract. In this article we study the impact of the spin-orbit interaction on the electron quantum con-
finement for narrow gap semiconductor quantum dots. The model formulation includes: (1) the effective
one-band Hamiltonian approximation; (2) the position- and energy-dependent quasi-particle effective mass
approximation; (3) the finite hard wall confinement potential; and (4) the spin-dependent Ben Daniel-Duke
boundary conditions. The Hartree-Fock approximation is also utilized for evaluating the characteristics of
a two-electron quantum dot system. In our calculation, we describe the spin-orbit interaction which comes
from both the spin-dependent boundary conditions and the Rashba term (for two-electron quantum dot
system). It can significantly modify the electron energy spectrum for InAs semiconductor quantum dots
built in the GaAs matrix. The energy state spin-splitting is strongly dependent on the dot size and reaches
an experimentally measurable magnitude for relatively small dots. In addition, we have found the Coulomb
interaction and the spin-splitting are suppressed in quantum dots with small height.

PACS. 71.70.Ej Spin-orbit coupling, Zeeman and Stark splitting, Jahn-Teller effect – 73.21.La Quantum
dots – 78.20.Bh Theory, models, and numerical simulation – 85.35.Be Quantum well devices (quantum
dots, quantum wires, etc.)

1 Introduction

The study of semiconductor quantum dots has been of
great interests [1–4] in recent years. These “artificial
atoms” are the most attractive because of their applica-
tions in micro and nano optical electronics [5–7]. From
this point of view, the hierarchical structure of the elec-
tron energy states in semiconductor quantum dots is an
important object to be studied.

The electron spin plays a crucial role in the design of
electron energy states in semiconductor quantum dots [8].
In spintronics, which is a new promising branch of the elec-
tronics, the spin-dependent energy structure for semicon-
ductor quantum dots can be an important factor [9,10].
The spin-orbit interaction is one of possible opportunities
to control the electron spin in a complete semiconductor
system. It has been found recently that the spin-orbit in-
teraction has an evident impact upon the energy states
and electronic properties for various III-V semiconduc-
tor quantum heterostructures [11–14], but the effects of
the spin-orbit interaction for semiconductor quantum dots
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have been investigated for simple two-dimensional (2D)
models [15] and still do not have a good understanding.

A wide range of theoretical calculations has been done
to simulate electronic properties of quantum dots and
most of them use numerical methods. The energy level
calculation has been done using the effective-mass ap-
proximation with [16–23] and without [24–27] the coor-
dinate dependence. The multiband k · p method with fi-
nite [28–30] or infinite [30,31] confinement potentials and
pseudopotential self-consistent methods were used in the
simulations ([32,33] and references therein).

In this work, we concentrate on the impact of the spin-
orbit interaction for the electron quantum confinement
in small three-dimensional (3D) cylindrical InAs quan-
tum dots embedded into GaAs matrix. We formulate the
problem that based on: (1) the effective electronic one
band Hamiltonian; (2) the energy- and position-dependent
electron effective mass approximation; and (3) the spin-
dependent Ben Daniel-Duke boundary conditions [11] si-
multaneously; then we solved numerically. In addition, we
use a realistic hard wall (of finite barrier height) 3D con-
finement potential for quantum dots which are disk shape
with the radius R0 and height z0. The potential is induced
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by the discontinuity of the conduction band between the
interface of the quantum dot. The spin-dependent bound-
ary conditions are generated by the difference of spin-
orbit interaction parameters between the quantum dot
and the semiconductor matrix. We calculated the single
electron energy states and two-electron ground state en-
ergy in small dots. For the single electron model, the spin-
splitting boundary condition lead to a spin-spliting in the
single electron energy states. The two-electron charge po-
tential generates an additional part of the spin-orbit inter-
action for an electron moving in the two-electron charge
potential [11], and then it produces an additional (Rashba
type) spin-splitting.

We generalize the nonlinear iterative method to solve
the 3D nonlinear Schrödinger equation. This nonlinear
iterative method has been proposed by us earlier to
compute the electronic states of semiconductor quantum
dots [34–37]. In each iteration loop, a balanced- and
shifted-QR algorithm and the inverse iteration method
are applied to calculate the corresponding eigenvalues
and eigenvectors of the discretized Schrödinger equa-
tion [38–43]. Our calculation results suggest the spin-orbit
interaction can significantly modify the electron energy
spectrum of InAs/GaAs semiconductor quantum dots. For
a single electron system, we have found that the spin-
dependent boundary conditions contribute a sizable spin-
splitting of the electron energy states for exciting states.
The spin-splitting for the lowest single electron energy
states demonstrates a strong dependence on the dot size
and it reaches an experimentally measurable magnitude
for the relatively small quantum dots.

The two-electron problem has been solved by the
restricted Hartree-Fock method [44,45]. The electron-
electron interaction leads to a small Coulomb correction
of the ground state energy. In addition, the Rashba spin-
splitting is essentially smaller than that generated by the
spin-dependent boundary conditions. In our realistic 3D
quantum dot model, we found that an anomalous scaling
of the Coulomb interaction energy decreases as the dot
height decreases. It can be considered as a direct result of
the electron wave function localization properties for 3D
systems with the finite confinement potential [32,33].

This paper is organized as follows. Section 2 provides
the quantum dot model description for a single electron
system. Section 3 states the model for two-electron sys-
tem. Section 4 is devoted to the description of calculation
methods. Section 5 presents the computational results and
discussions. Section 6 draws the conclusions and suggests
the future works and remarks.

2 A single electron system

Considering an electron confined in a 3D quantum dot and
applying an effective one electronic band Hamiltonian, we
have [11]

Ĥse = Ĥ0 + V̂so(r), (1)

where Ĥ0 is the Hamiltonian of the system without spin-
orbit interaction and Vso(r) indicates the spin-orbit inter-
action for electrons in the conduction band. The expres-
sion of Ĥ0 is as follows [46]:

Ĥ0 = −�
2

2
∇r

(
1

m(E, r)

)
∇r + V (r), (2)

where ∇r stands for the spatial gradient. The m(E, r) is
the energy- and position-dependent electron effective mass

1
m(E, r)

=
2P 2

3�2

[
2

E + Eg(r) − V (r)

+
1

E + Eg(r) + ∆(r) − V (r)

]
, (3)

where V (r) is the confinement potential, P is the momen-
tum matrix element, and Eg(r) and ∆(r) are the position-
dependent band gap and the spin-orbit splitting in the
valence band, respectively. The spin-orbit interaction for
the conduction band electrons, Vso(r) is given by [47]

V̂so(r) = i∇β(E, r) · [σ̂ ×∇] , (4)

where β(E, r) is the spin-orbit coupling parameter, and
σ̂= {σx, σy, σz} is the vector of the Pauli matrices. The
energy- and position-dependent β(E, r) has the form as

β(E, r) =
P 2

3

[
1

E + Eg(r) − V (r)

− 1
E + Eg(r) + ∆(r) − V (r)

]
· (5)

For the quantum dot system with the sharp discon-
tinuity on the conduction band interfaces between the
quantum dot (material 1) and semiconductor matrix
(material 2), the hard-wall confinement potential is

V (r) =

{
0, r ∈ material 1

V0, r ∈ material 2,
(6)

where V0 is the band offset of structures. Combining the
Hamiltonian in equations (1, 2), and (4), and taking an
integration of this Schrödinger equation with respect to
the direction perpendicular to the system interface, the
spin-dependent Ben Daniel-Duke boundary conditions for
the electron wave function Ψ(r) is written as follows:

Ψmaterial 1(rs) = Ψmaterial 2(rs){
�
2

2m(E,rs)
∇− iβ(E, rs) [σ̂ ×∇]

}
n

Ψ(rs) = C0,
(7)

where C0 is a constant, and rs denotes the position of the
system interface.
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Fig. 1. A schematic diagram for the disk-shaped quantum dot.

We now consider a disk-shaped semiconductor quan-
tum dot (see Fig. 1) with the radius R0 and height z0 in
the cylindrical coordinate (R, φ, z). The origin of the sys-
tem is at the center of the disk, and the z axis is chosen
along the rotation axis. Since the system is cylindrically
symmetric, the wave function can be represented as

Ψl(r) = Φl(R, z) exp(ilφ), (8)

where l = 0,±1,±2, ... is the electron orbital quantum
number, and the original model remains a 2D problem in
the (R, z) coordinate. From equations (1–6) and (8), we
obtain equations

− �
2

2m1(E)

(
∂2

∂R2
+

∂

R∂R
+

∂2

∂z2
− l2

R2

)
Φl1(R, z) =

EΦl1(R, z), R ≤ R0, |z| ≤ z0

2
(9)

− �
2

2m2(E)

(
∂2

∂R2
+

∂

R∂R
+

∂2

∂z2
− l2

R2

)
Φl2(R, z)

+ V0Φl2(R, z) = EΦl2(R, z), R > R0, |z| >
z0

2
· (10)

With the same reasons that the problem is symmetric
along the z axis, the spin-dependent boundary conditions
in equation (7) are given by

Φl1(R0, z) = Φl2(R0, z), |z| ≤ z0

2
(11)

Φl1(R,±z0

2
) = Φl2(R,±z0

2
), R ≤ R0 (12)

1
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∂R
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− 1
m2

∂Φl2(R, z)
∂R
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R0

+
2σ(β1 − β2)

�2

l

R0
Φl1(R0, z) = 0, |z| ≤ z0

2
(13)

1
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± z0

2

− 1
m2

∂Φl2(R, z)
∂z

∣∣∣∣
± z0

2

= 0, R ≤ R0,

(14)

where σ refers to the electron spin polarization along the
z axis. Both the electron energy state and wave functions
are tightly coupled and complicated with the quantum dot
parameters and the electron angular momentum. We solve
equations (9, 10) with their boundary conditions (11–14)
using the proposed numerical methods in Section 4.

In the discrete energy spectrum of the quantum dot,
the energy states are numerated by a set of numbers
{n, l, σ}, where n is the nth solution of the problem with
the fixed l and σ. For the same value of n, the paral-
lel (or antiparallel) orbital momentum, and spin, the en-
ergy states still have two-fold degeneration (well-known
Kramers degeneracy). However, the nth state with an-
tiparallel orbital momentum and spin are separated from
the n-th state with parallel orbital momentum and spin.

In the cylindrical quantum dot, a conventional nota-
tion nLσ for the electron energy states is adopted, where
L = S, P, D, ... denotes the absolute value of l, and
σ = ±1 refers to the electron spin directions correspond-
ing to the electron angular momentum direction. For all
calculations we choose the lowest energy state (n = 1).
The spin-splitting energy is defined as

∆EnL = EnL+1 − EnL−1 . (15)

The two-electron charge potential has an additional
part of the spin-orbit interaction with the Rashba term.
The problem of the two-electron system is solved by the
restricted Hartree-Fock method in the next section.

3 A two-electron system

The Hamiltonian describing the system of two-electron
interaction is given by [44,48]

Ĥ =
∑

i=1,2

Ĥi
se + VC(r1, r2) + V̂R, (16)

where Hi
se represents the effective Hamiltonian as shown

in equation (1) for the ith electron, VC(r1 , r2) is the
Coulomb repulsion among the electrons, and VR is
the spin-orbit interaction of an electron moving in the
Coulomb repulsion potential

V̂R = −i
∑

i=1,2

∑
j �=i

α(ri)∇iVC(ri, rj) · [σ̂i ×∇i
]
, (17)

where α is the Rashba spin-orbit coupling parameter [47].
The expression of α is as follows

α(r) =
�

2

2m(0, r)
∆(r)
Eg(r)

2Eg(r) + ∆(r)
[Eg(r) + ∆(r)] [3Eg(r) + ∆(r)]

·
(18)
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The Coulomb repulsion VC(r1 , r2) is defined as [49]

VC(r1, r2) =
1

4πε0ε |r1 − r2| ,

where ε0 is the permittivity of vacuum and ε = (ε1+ε2)/2
is the average dielectric constant, which introduces only
a small error for InAs/GaAs quantum dot systems since
the dielectric constant ε1 and ε2 differ by less then 13%.

In the restricted Hartree-Fock approximation
[44,45,48], when the two electrons are in the ground state
of (1S+1) + (1S−1) configuration, we can consider the
spatial wave function of the ground state (l1 = l2 = 0) as

U(r1, r2) = u(r1)u(r2), (19)

where u(ri) is the normalized to unity solution of the
differential-integral equation in the form[

Hi
se + G(ri) − Ei

]
u(ri) = 0, (20)

with

G(ri) =
∫ ∣∣u(rj)

∣∣2 drj

4πε0ε |ri − rj | · (21)

The expectation value of the ground state energy (since
the solutions 1 and 2 are identical) is

Ē = 2E1 − Ḡ, (22)

where

Ḡ =
∫

G(r1)
∣∣u(r1)

∣∣2 dr1.

The electron addition energy [8,33] in our system is

∆(1) = Ē − E1S±1 . (23)

Within the restricted Hartree-Fock approximation, we
evaluate an addition spin-splitting ∆ER

1L. It comes with
the Rashba term which is generated by the charge of “the
core electron” (ground state), and can be calculated as

∆ER
1L = ER

1L+1
− ER

1L−1
, (24)

where

ER
1L±1

= −2i
∫

α(r)Ψ∗
l (r)χ∗

±1∇G(r) [σ̂ ×∇] Ψl(r)χ±1dr,

and χσ is a spin function upon which the Pauli matrix
vector operates

χ+1 =
(

1
0

)
, χ−1 =

(
0
1

)
. (25)

4 Method of calculation

To solve the nonlinear Schrödinger equation, we gener-
alize here the nonlinear iterative scheme proposed by us
earlier [34–37]. This novel solution scheme for the single
electron system simulation consists of steps: (i) set initial
energy; (ii) compute electron effective mass; (iii) compute
spin-orbit coupling parameter; (iv) solve the Schrödinger
equation; and (v) update the newer energy and back to
step (ii). The iteration will be terminated when the com-
puted energy is converged to a specified tolerance error.
Once the convergent results are obtained, we perform the
post process to calculate the spin-splitting energy and re-
lated quantities.

For the two-electron system simulation, we have also
developed a similar nonlinear iteration algorithm. The al-
gorithm is outlined as follows: (a) set initial parameters
and estimate an initial energy, (b) compute the electron
effective mass, (c) compute the spin-orbit coupling param-
eter, (d) compute the Coulomb repulsion potential, (e)
solve the corresponding Schrödinger equation, and (f) up-
date the newer energy and back to step (b). The iteration
terminates when the desired energy is convergent.

To obtain the complete numerical solution of the
Schrödinger equation in step (iv) or (e) above, a finite
difference method with nonuniform mesh technique is
firstly applied to discretize the Schrödinger equation [38].
The discretized Schrödinger equation with its boundary
conditions leads to an algebraic eigenvalue problem as
follows

AX = λX, (26)

where A is the matrix arising from the discretized
Schrödinger equation and boundary conditions, X, and λ
to be computed are the corresponding eigenvectors (wave
functions) and the eigenvalues (energy states) of the ma-
trix A, respectively. Because the matrix A is an energy-
dependent, five-diagonal, nonsymmetric, and large sparse
matrix, the eigenvalues of such matrix can be very sen-
sitive to small changes in the matrix elements [39–41].
One of the main reasons resulting in the sensitivity of
eigenvalues of the matrix A is the discontinuity between
the interface and the rest part of quantum dots. It di-
rectly affects the intrinsic property of the matrix A by
introducing some extreme elements. Therefore, we apply
the balanced algorithm [39–41] to reduce the sensitivity of
eigenvalues of the matrix A to small changes in the matrix
elements. Then the balanced matrix A is transformed into
a simpler upper Hessenberg form. The eigenvalues of the
upper Hessenberg matrix are directly computed with the
shifted-QR method [39,40]. The shifted- and balanced-QR
method is the dominant method for solving nonsymmet-
ric matrix eigenvalue problem [42]. When an eigenvalue is
found, the corresponding eigenvector of this eigenvalue is
calculated with the inverse iteration method [39,43].

According to our calculation experience, the applied
nonlinear iterative method converges monotonically for
the simulation of both the single electron system and the
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Fig. 2. The dependence of the 1P energy state splitting on
the dot size.

two-electron system at the same time. A strict conver-
gence criterion on energies (the maximum norm error is
less than 10−8 eV) can be reached by taking only 9–10 (or
12–13) feedback nonlinear iterations for the single electron
system (or the two-electron system).

5 Results and discussions

In the calculation of the single electron energy spec-
tra for InAs cylindrical quantum dots in GaAs matrix,
the following semiconductor band structure parameters
are used. For the InAs, the energy gap E1g is 0.42 eV,
spin-orbit splitting ∆1 is 0.42 eV, the value of the non-
parabolicity parameter E1p is 3m0P

2
1 /�

2 = 22.2 eV, and
m0 is the free electron effective mass. For the GaAs we
choose E2g = 1.52 eV, ∆2 = 0.34 eV, and E2p = 24.2 eV.
The band offset is taken as V0 = 0.77 eV [46]. The spin-
splitting effect is obviously equal to zero for the lowest en-
ergy state 1S±1. The dependence of the 1P energy state
splitting, ∆E1P , on the quantum dot size is shown in Fig-
ure 2 for various sizes of quantum dots.

This theory demonstrates an evident spin-splitting of
the 1P energy state for small quantum dots. The splitting
is strongly dependent on the dot radius and it decreases
when the dot radius increases. At the same time, for quan-
tum dots with small height the spin-splitting is small. As
shown in Figure 2, there is a 1.0 meV difference in ∆E1P

for z0 varies from 1.5 nm to 9.5 nm when the dot radius
is fixed at 5.0 nm. This is a result of the electron wave
function tunneling into the barrier along the z axis.

To clarify this effect, we compare probabilities to find
the electron inside and outside the dot by examining the
following occupancy-ratio

w =

∫
r∈material 1

dr3|Φ(R, z)|2∫
r∈material 2 dr3|Φ(R, z)|2 · (27)

As shown in Figure 3, for the quantum dots with a small
height, the electron wave function spreads out of the quan-
tum dot (w ∼ 1), and the property of the energy state is
controlled by the band parameters of GaAs matrix. In this
situation an effective difference of spin-orbit coupling pa-
rameters β1 − β2 is rather small. When z0 increases, the
difference also increases and then becomes independent
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Fig. 3. The ratio w for various dot sizes (n = 1, l = 1, σ = −1).
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Fig. 4. (a) The addition energy ∆Eadd of dots. (b) The dif-
ference D = ∆(1) − E1S±1 for various dot sizes.

on z0. For a fixed z0, the more R0 increases, the smaller
energy of the electron bound states becomes and it pro-
vides the smaller penetration of the electron wave function
into the barrier. This makes the energy splitting large for
the cylindrical quantum dots with the small height.

The electron addition energy depending on the dot
size is calculated by equations (22–24) and the scheme
described above. We found that the addition energy is
slightly different from the single electron ground state.
The addition energy of dots and the difference, D =
∆(1) − E1S±1 , (representing the Coulomb interaction im-
pact onto the energy state for various dot sizes) are shown
in Figures 4a and b, respectively. We have two observa-
tions. First, the one electron addition energy in the InAs
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quantum dots increases as the dot size decreases rapidly.
Second, the dependence of the dot height for the Coulomb
part of the addition energy D does not follow the conven-
tional scheme; it decreases when the dot height decreases.
The last observation is contrary to the conventional point
of view [50]. This result is the direct consequence of the
parameter w depending on the dot size; in other words,
the wave function spreading enhances the characteristic
size of the dot and effectively decreases the Coulomb in-
teractions. It should be noticed that the addition energy
is an experimentally measurable quantity [8]. By compar-
ing with the one electron energy in the dot, it provides
us more information about D than it about the Coulomb
interaction of few electrons in small quantum dots.

As shown in Figure 5, we present the spin-splitting,
∆ER

1P , of the Rashba term. It follows the observation
described above (i.e., the addition splitting decreases
as the dot height decreases). Furthermore, it is suffi-
ciently smaller than the splitting comes from the spin-
dependent boundary conditions. The total spin-splitting,
∆E1P + ∆ER

1P , produces a measurable quantity for the
infrared optical experiment.

Before we conclude, we would like to mention that an
experimental observation of the effects described above re-
quires some specific conditions. First of all the dots should
be really small (lateral size about 10 nm) and highly ho-
mogeneous in sizes. It is also interesting to study a lo-
cal small single dot system [51]. Satisfying those condi-
tions, one can use any spectroscopic technique elaborated
in the quantum dot investigations ([8,52,53] and reference
therein). To our best knowledge, such kind of experiments
for InAs/GaAs quantum dots has not been done yet.

6 Conclusions

We have studied the impact of the spin-orbit interac-
tion on the electron energy states for small semiconduc-
tor cylindrical quantum dots. We formulated and solved
the 3D problem with (1) the effective one electronic
band Hamiltonian, (2) the energy- and position-dependent
electron effective mass and (3) the spin-dependent Ben
Daniel-Duke boundary conditions for quantum dots with

various sizes. The restricted Hartree-Fock approximation
has been also utilized to evaluate the characteristics of a
two-electron quantum dots.

Our calculation results demonstrate that the spin-orbit
interaction comes both from the spin-dependent boundary
conditions and the Rashba term (for two-electron quan-
tum dot system). It can significantly modify the electron
energy spectrum of the InAs semiconductor quantum dots
built in the GaAs matrix. The splitting is strongly depen-
dent on the quantum dot size and reaches an experimen-
tally measurable magnitude for relatively small quantum
dots. In addition, we have found that the Coulomb interac-
tion and the spin-splitting can be suppressed in quantum
dots with small height.

We would like to point out that the model, simulation
methods, and results presented here can be used as a start-
ing point in the estimation of the spin-orbit interaction ef-
fects in 3D semiconductor quantum dots. Future calcula-
tions include a self-consistent potential and the multiband
approach to obtain proper quantitative results.

The authors express their appreciation to the referee for an
exceptional in-depth reading of the manuscript. This work was
supported in part by the National Science Council of Taiwan
under contract No. NSC 90-2112-M-317-001 and 90-2215-E-
009-025.
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